Разное

Радиус как померить – Всем кто понимает в математике зайдите! Как измерить радиус окружности если длина окружности 100 мм?

Урок как найти радиус окружности линейкой и циркулем на artatac

Найти центр кругаДобрый день коллеги. Что бы найти радиус окружности с помощью линейки и циркуля много времени не нужно. Вспомним школьные годы. Для тех, кто запамятовал или прогуливал будет полезен этот урок.

Все легко. Но случается, когда очевидное произносишь вслух, тогда вдруг понимаешь: «- Я так и думал. Что такое диаметр окружности я знал. Просто не помню…».

Это наш случай.

Существуют разные подходы.

  • Можно найти диаметр круга через вычисления.
  • Найти цент окружности с помощью угольника.
  • Решить с помощью листа ватмана (важно, чтобы был лист с 90 градусными углами).
  • А можно применив циркуль и линейку.

Рассмотрим простой способ (один из…), как найти диаметр окружности с помощью линейки и циркуля.

Здесь чистая геометрия. А эта наука идет рядом с живописью, с архитектурой.

Для чего это художникам?

Работа с цветным стеклом. В церквях окна с раскрашенными кусочками стекла составляют картины. Делая такие витражи без точных вычислений не обойтись. Каждый из кусочков нужно точно вырезать и поставить в определенную ячейку. Поэтому и здесь пригодиться наш метод.

Найти центр окружности

 

Представим, что мы расписываем стену, у нас имеется круглый трафарет, но вот центра нет. А нам жизненно необходимо его определить и точно прикладывать к определенным точкам нашей композиции на стене.

Может мы мастера по дереву. Делаем резной круглый стул или стол. В средине необходимо просверлить или нарисовать узор.

Очень тяжелая работа роспись на потолке. Формы разные. Когда начинаем с начала, то средина будет. Когда панно переделываем, то круг имеется, но центр нужно найти. С размерами необходимо будет повозиться, но это второй вопрос.

Возможно найти радиус круга, центр путем подбора, но это долго и не эффективно.

На видео ниже детально описано как найти центр.

Как найти центр окружности

Рассмотрим в картинках, как найти радиус окружности

Что такое диаметр окружности многие знают.

Линия, нарисованная через центр окружности и будет диаметр. Радиус круга — это его половина (для того, кто не помнит).

Дана окружность зеленый цвет.

Что такое диаметр

 

На теле зеленого круга ставим случайно точку A, и вокруг нее описываем круг фиолетового цвета.

Найти радиус окружности

 

Ставим еще одну точку B. Описываем второй круг.

Определить центр круга

 

Проведя через пересечения фиолетовых окружностей прямую, получаем диаметр зеленого круга C D.

Найти диаметр с помощью циркуля

Диаметр круга

Эту же процедуру проводим с желтыми объектами. Только их центрами будут точки C D.

Проведя через пересечения желтых объектов прямую, получим очередной диаметр перпендикулярный первому. Их пересечение будет центром зеленого с точкой O.
Как найти центр окружности 1221

 

Важно, чтобы фиолетовые круги были одинаковы, а по размеру чуть больше зеленого.

К желтым окружностям это тоже относится.

Этим не хитрым способом получим центр, что поможет без задержек выполнить заказ.

Человек на рисунке часто окружен архитектурными объектами. Без точных вычислений определить геометрию окружения, уходящую в перспективу, не выйдет. В такие моменты и нужны знания геометрии.

Построить среду обитания не сложно. Имея знания, подобная задача не будет трудной.

Все художники (без исключения) пользуются построением.

В уроках рисования на нашем сайте можно онлайн узнать ответы на разные вопросы.

В курсе по рисунку собраны уроки перспективы, тона, построения, композиции и разные хитрости.

Посмотреть заметки о делении круга на семь частей, на пять, двенадцать…

artatac.ru

Круг. Окружность (центр, радиус, диаметр). Видеоурок. Математика 3 Класс

У круга есть одна подруга,

Знакома всем её наружность,

Она идет по краю круга

И называется окружность.

Если рассмотреть рисунки 1-6 в таблице 1 и определить те линии, которые являются незамкнутыми, увидим, что это рисунки 1 и 2. Из оставшихся фигур видно, что рисунки 3 и 6 – это ломаные замкнутые линии. А рисунки 4 – это овал, и 5 – это окружность.

Таблица 1. Линии

 

Рис. 1

 

 

Рис. 2

 

Рис. 3

 

Рис. 4

 

Рис. 5

 

Рис. 6

Давайте сравним между собой овал и окружность (рис. 7–8). А данные о сравнении занесём в таблицу 2.

Таблица 2. Сравнение овала и окружности

Окружность – это замкнутая кривая линия с точкой  в середине, которая называется центром. Расстояния от центра до линии окружности одинаковые.

Если соединить центр окружности с линией окружности, получим радиус, например, на рисунке 8  и

.

Радиус – длина отрезка, соединяющего центр окружности с любой точкой, лежащей на окружности. Радиус составляет половину диаметра.

Если отрезок проходит через центр и соединяет две точки на окружности – это диаметр, например, на рисунке 8 отрезок .

Диаметр – это длина отрезка, проходящего через центр окружности и соединяющего две точки на этой окружности.

Разгадаем загадку:

Мой циркач, циркач лихой

Чертит круг одной ногой,

А другой – проткнул бумагу,

Уцепился – и ни шагу.

В загадке речь идёт о циркуле – чертёжном инструменте (рис. 9), с помощью которого можно начертить окружности с разными радиусами.

Рис. 9. Циркуль (Источник)

Если заполнить пространство внутри окружности, например начертить окружность с помощью циркуля на бумаге или картоне и вырезать, то получим круг (рис. 10).

 

Рис. 10. Круг

Круг – это часть плоскости, ограниченная окружностью.

Условие: Витя Верхоглядкин начертил в своей окружности (рис. 11) 11 диаметров. А когда пересчитал радиусы, получил 21. Правильно ли он сосчитал?

Рис. 11. Иллюстрация к задаче

Решение: радиусов должно быть в два раза больше, чем диаметров, поэтому:

Витя сосчитал неправильно.

 

Список литературы

  1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] – 2-е изд. – М.: Просвещение, 2012. – 112 с.: ил. – (Школа России). 
  2. Рудницкая В.Н., Юдачёва Т.В. Математика, 3 класс. – М.: ВЕНТАНА-ГРАФ.
  3. Петерсон Л.Г. Математика, 3 класс. – М.: Ювента.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Mypresentation.ru (Источник).
  2. Sernam.ru (Источник).
  3. School-assistant.ru (Источник).

 

Домашнее задание

1. Математика. 3 класс. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.] – 2-е изд. – М.: Просвещение, 2012., ст. 94 № 1, ст. 95 № 3.

2. Разгадайте загадку.

Мы живём с братишкой дружно,

Нам так весело вдвоём,

Мы на лист поставим кружку (рис. 12),

Обведём карандашом.

Получилось то, что нужно –

Называется …

Рис. 12. Кружка (Источник)

3. Необходимо определить диаметр окружности, если известно, что радиус равен 5 м.

4. * С помощью циркуля начертите две окружности с радиусами: а) 2 см и 5 см; б) 10 мм и 15 мм.

interneturok.ru

Найти длину радиуса окружности (круга), все основные формулы.

Радиус окружности — отрезок, соединяющий её центр и любую другую точку расположенную на линии окружности.
Окружность это замкнутая кривая линия, все точки которой, равноудалены от другой, определенной точки (центр окружности) на заданном расстоянии (радиус).


окружность радиус

R — радиус окружности (круга)

D — диаметр, D = 2R

O — центр круга

π ≈ 3.14

 

Формула для определения длины радиуса, если известна площадь круга :

Формула радиуса, площадь

 

 

Формула для определения длины радиуса, если известна длина окружности :

Формула радиуса, длина

 

окружность радиус

R — радиус окружности (круга)

h — высота сегмента

L — длина хорды

O — центр круга

α — центральный угол

 

Формула для определения длины радиуса, если известна длина хорды :

Формула радиуса, хорда

 

Подробности
Автор: Сергей Кондратов logo

www-formula.ru

Что такое диаметр, радиус и как измерить окружность

Начнём по порядку. Диаметр это длина отрезка, проходящего через центр окружности и соединяющего две точки окружности. Радиус это длина отрезка соединяющего центр окружности с любой точкой окружности. Измерить окружность легко. Проводятся две касательные, к измеряемой окружности, прямые. В зависимости от масштаба и для достижения наибольшей точности, предпочтительно, чтобы угол между этими касательными был около 90 градусов (поймёте с опытом). Затем, через точки касания, проводятся нормали (линии, перпендикулярные касательным). Точка пересечения этих нормалей и есть центр измеряемой окружности. Затем, например линейкой, измеряем радиус и (или) диаметр. Затем можно вычислить периметр окружности, умножив диаметр на Пи (примерно равно 3,14159) или радиус умножить на 2Пи… Теперь о других ответах. Круг это не окружность, так как он имеет площадь. Окружность же её не имеет, так как это линия! И штангенциркулем не измеряется ни окружность, ни круг! Из похожего на окружность и на круг штангенциркулем измеряется диаметры цилиндрических поверхностей, как наружных, так и внутренних…

Рано тебе еще это знать, вот перейдешь в 4 класс тогда и поймешь

Круг=2 радиусам, измеряется штангенциркулем

touch.otvet.mail.ru

Как определить радиус дуги или сегмента круга и найти центр

Первый метод определения радиуса дуги или сегмента круга

Изначально это выглядит так:

 

Рисунок 463.1. а) имеющаяся дуга, б) определение длины хорды сегмента и высоты.

Таким образом, когда имеется дуга, мы можем соединить ее концы и получим хорду длиной L. Посредине хорды мы можем провести линию, перпендикулярную хорде и таким образом получим высоту сегмента H. Теперь, зная длину хорды и высоту сегмента, мы можем сначала определить центральный угол α, т.е. угол между радиусами, проведенными из начала и конца сегмента (на рисунке 463.1 не показаны), а затем и радиус окружности.

Решение подобной задачи достаточно подробно рассматривалось в статье «Расчет арочной перемычки», поэтому здесь лишь приведу основные формулы:

tg(a/4) = 2Н/L (278.1.2)

тогда

а/4 = arctg(2H/L)

R = H/(1 — cos(a/2)) (278.1.3)

Как видим, с точки зрения математики никаких проблем с определением радиуса окружности нет. Данный метод позволяет определить значение радиуса дуги с любой возможной точностью. Это главное достоинство данного метода.

А теперь поговорим о недостатках.

Проблема данного метода даже не в том, что требуется помнить формулы из школьного курса геометрии, успешно забытые много лет назад — для того, чтобы напомнить формулы — есть интернет. А вот калькулятор с функцией arctg, arcsin и проч. есть далеко не у каждого пользователя. И хотя эту проблему также успешно позволяет решить интернет, но при этом не следует забывать, что мы решаем достаточно прикладную задачу. Т.е. далеко не всегда нужно определить радиус окружности с точностью до 0.0001 мм, точность 1 мм может быть вполне приемлема.

Кроме того, для того, чтобы найти центр окружности, нужно продлить высоту сегмента и отложить на этой прямой расстояние, равное радиусу. Так как на практике мы имеем дело с не идеальными измерительными приборами, к этому следует прибавить возможную погрешность при разметке, то получается, что чем меньше высота сегмента по отношению к длине хорды, тем больше может набежать погрешность при определении центра дуги.

Опять же не следует забывать о том, что мы рассматриваем не идеальный случай, т.е. это мы так сходу назвали кривую дугой. В действительности это может быть кривая, описываемая достаточно сложной математической зависимостью. А потому найденный таким образом радиус и центр окружности могут и не совпадать с фактическим центром.

В связи с этим я хочу предложить еще один способ определения радиуса окружности, которым сам часто пользуюсь, потому что этим способом определить радиус окружности намного быстрее и проще, хотя точность при этом значительно меньше.

Второй метод определения радиуса дуги (метод последовательных приближений)

Итак продолжим рассмотрение имеющейся ситуации.

Так как нам все равно необходимо найти центр окружности, то для начала мы из точек, соответствующих началу и концу дуги, проведем как минимум две дуги произвольного радиуса. Через пересечение этих дуг будет проходить прямая, на которой и находится центр искомой окружности.

Теперь нужно соединить пересечение дуг с серединой хорды. Впрочем, если мы из указанных точек проведем не по одной дуге, а по две, то данная прямая будет проходить через пересечение этих дуг и тогда искать середину хорды вовсе не обязательно.

Ну а дальше все просто: измеряем расстояние от пересечения дуг до начала (или конца) рассматриваемой дуги, а затем расстояние от пересечения дуг до точки, соответствующей высоте сегмента.

Если расстояние от пересечения дуг до начала или конца рассматриваемой дуги больше, чем расстояние от пересечения дуг до точки, соответствующей высоте сегмента, то значит центр рассматриваемой дуги находится ниже на прямой, проведенной через пересечение дуг и середину хорды. Если меньше — то искомый центр дуги выше на прямой.

Исходя из этого на прямой принимается следующая точка, предположительно соответствующая центру дуги, и от нее производятся те же измерения. Затем принимается следующая точка и измерения повторяются. С каждой новой точкой разница измерений будет все меньше.

Вот собственно и все. Не смотря на столь пространное и мудреное описание, для определения радиуса дуги таким способом с точностью до 1 мм достаточно 1-2 минут.

Теоретически это выглядит примерно так:

Рисунок 463.2. Определение центра дуги методом последовательных приближений.

А на практике примерно так:

Фотография 463.1. Разметка заготовки сложной формы с разными радиусами.

Тут только добавлю, что иногда приходится находить и чертить несколько радиусов, потому на фотографии так много всего и намешано.

doctorlom.com

Окружность, радиус, диаметр, число Пи, сектор, касательная

Окружность — геометрическое место точек плоскости, расстояние от которых до центра окружности равно.

Центр окръжности

Радиус: расстояние от центра окружности до его границы.

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.

$d = 2\cdot r$

Периметр (длина окружности): длина границы окружности.

Длина окружности $= \pi \cdot$ диаметр $= 2 \cdot \pi \cdot$ радиус
Длина окружности $= \pi \cdot d = 2 \cdot \pi \cdot r$


$\pi$ — pi: число, равное 3,141592… или $\approx \frac{22}{7}$, то есть отношение $\frac{\text{длины окружности}}{\text{диаметр}}$ любого окружности.

Дуга: изогнутая линия, которая является частью окружности.

Дуги окружности измеряется в градусах или радианах.
Например: 90° или $\frac{\pi}{2}$ — четверть круга,
180° или $\pi$ — половина круга.
Сумма всех дуг окружности составляет 360° или $2\pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.

Сектор: похож на часть пирога (клин).

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.

Формулы

Длина окружности $=\pi \cdot \text{диаметр} = 2\cdot \pi \cdot \text{радиус}$

Площадь круга $= \pi \cdot$ радиус2

Радиус обозначается как r, диаметр как d, длина окружности как P и площадь как S.

$P = \pi \cdot d = 2\cdot \pi \cdot r$
$S = \pi \cdot r^2$

Площадь сектора круга

Площадь сектора круга K: (с центральным углом $\theta$ и радиусом $r$).
Если угол $\theta$ в градусах, тогда площадь = $\frac{\theta}{360} \pi r^2$
Если угол $\theta$ в радианах, тогда площадь, тогда площадь = $\frac{\theta}{2} r^2$

Углы

Центральный угол

Если длина дуги составляет $\theta$ градуов или радиан, то значение центрального угла также $\theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах …) вы можете найти значение её соответствующего центрального угла ($\theta$) по формуле:

$\theta = 360 \cdot \frac{l}{P} = \frac{360 \cdot l}{2 \cdot \pi \cdot r} = \frac{180 \cdot l}{\pi \cdot r}$

$l$ — длина дуги.

Вписанный угол

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Величина вписанного угла равна половине дуги, на которую он опирается.

Пример:
$\widehat{AB} = 84^\circ$
$\angle APB = \frac{84}{2} = 42^\circ$

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны $\frac{1}{2}(60^\circ + 50^\circ)=55^\circ$

Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

$\angle ABC =\frac{1}{2}(x — y)$

На рисунке дуга AB=80° и дуги CD=30°.
$\angle ABC = \frac{1}{2}(80 — 30) = \frac{1}{2} \cdot 50 = 25^\circ$

Хорды


Если две хорды пересекаются внутри окружности, как на рисунке выше, тогда:

$AX \cdot XB = CX \cdot XD$

www.math10.com

Всем кто понимает в математике зайдите! Как измерить радиус окружности если длина окружности 100 мм?

100 надо разделить на 2пи то есть: длина окружности равна L=2PR, где R-это радиус, L-длина окружности, P- число «пи», соответственно, R=L/2P или R=100/2*3.14, посчитайте результат на калькуляторе Crazy Hedgehog- НУ ТЫ И ПРИДУРОК!!! КАК ТЫ ДОДУМАЛСЯ ЕЩЕ И НА ОТВЕТЫ ЗАЙТИ??? САМ НИ ФИГА НЕ ЗНАЕШЬ. ТАК И ДРУГИМ БРЕД СОВЕТУЕШЬ!!!

с-длина окружности… = 2rп, то понятно что если длина равна 100 то радиус равен 100/3,14=32.(около того)

нифига ниче делить на пи не надо! если длина (это диаметр) то его радиус равен 50 !

размер от одной точки до другой меряют линейкой тут считать надо точность не задана жаль 17 мм правильно так же как и 16

touch.otvet.mail.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о